Differences between revisions 27 and 28
Revision 27 as of 2013-04-07 09:53:52
Size: 9227
Editor: AMarseille-654-1-508-104
Comment:
Revision 28 as of 2016-01-25 14:11:53
Size: 5799
Editor: LionelVaux
Comment:
Deletions are marked like this. Additions are marked like this.
Line 110: Line 110:

== Interface en Tk ==

''Tout à fait optionnel''.

Si vous avez des restes de Tkinter, mettez les en œuvre pour écrire une interface graphique qui permette de :
 * sélectionner un fichier d’image existant, et un fichier de sortie ;
 * appliquer un filtre parmi ceux écrits auparavant.

== Intégration au GIMP ==

''Extrêmement optionnel''.

Il est possible d’intégrer vos algorithmes de transformation d’image au [[http://www.gimp.org/|GIMP]].
Il y a un côté satisfaisant à voir tourner son travail dans un programme standard.
Il y a cependant deux difficultés :
 * le GIMP est seulement compatible avec Python 2 ;
 * le modèle d’image en mémoire n’est pas le même que celui de Pillow, donc il faudra modifier un peu vos algorithmes pour les adapter.

Cette partie n’est donc proposée que pour les plus motivés et autonomes, en remplacement de la précédente.


=== Quelques indications pour commencer ===

Voilà les grandes lignes.

Il faut créer un programme Python 2, disons `filtre.py`, qui commence par importer le module `gimpfu`.
Le fichier contenant ce programme doit être exécutable, et ranger dans un dossier où le GIMP cherche ses greffons (ça se règle dans les préférences).

Votre filtre doit être une fonction python `filtre(image, drawable)`.


L’argument `image` est un objet complexe qui représente l’image et toute ses métadonnées (calques, etc.).
L’argument `drawable` est la surface (calque ou canal) sur laquelle on dessine.
La méthode la plus simple pour modifier l’image est de faire appel aux outils de GIMP.

Par exemple, la fonction suivante dessine un point au centre de l’image :
{{{#!highlight python
def centre(img,drawable):
  largeur = drawable.width
  hauteur = drawable.height
  xc = largeur//2
  yc = hauteur//2
  gimp.pdb.gimp_pencil(drawable,2,(xc,yc,xc,yc))
  return
}}}
On utilise ici l’outil « crayon » du GIMP. Pour connaître les méthodes disponibles, le GIMP fournit un « navigateur de procédures » dans le menu d’aide.

Ensuite, il faut enregistrer votre greffon dans la base de donnée, pour que le GIMP connaisse son existence. Ceci se fait avec la fonction ``register`` du module ``gimpfu`` :
{{{#!highlight python
register(
    "centre", # nom de la procédure pour le GIMP
    "Rajoute un (gros) point au centre de l’image", # description du greffon dans PDB
    "Rajoute un (gros) point au centre de l’image", # message d’aide
    "Lionel Vaux", # auteur
    "Lionel Vaux", # copyright
    "2013", # date du copyright
    "<Image>/Filters/Render/_Centre", # chemin d’accès au greffon dans les menus du GIMP
    "*", # types d’image acceptés
    [], # liste de paramètres additionnels pour la fonction
    [], # résultats de la fonction (aucune idée de ce à quoi ça sert)
    centre, # fonction python à appeler
)
}}}
Après un redémarrage éventuel du GIMP, le filtre est diponible dans le menu « Filtres/Rendu ».

Youpi !
 
=== Et ensuite ? ===

Pour modifier directement les pixels d’une image de manière efficace, il faut utiliser les ''pixel regions'' :
voir http://www.gimp.org/docs/python/. À ce point du TP, un peu de recherche autonome sur internet sera utile…

Une idée intéressante : écrire un filtre qui génère un nouveau calque affichant en transparence un diagramme de Voronoi.

Préambule

Ce TP utilise la bibliothèque Pillow : voir les instructions.

Avant de commencer, je vous suggère d’aller piocher une image de test pas trop grosse (disons au maximum 1024 pixels dans chaque dimension). À défaut en voilà deux, obtenues à partir d’une photo mise à disposition par Hans Stieglitz sur les Wikimedia commons, et soumise à la licence CC-BY-SA 3.0 :

Filtres d’image

Cette partie du TP concerne l’algorithmique de l’image. Plus précisément, on manipulera des images matricielles, c’est-à-dire représentées par des tableaux de pixels.

On utilise Pillow pour s’affranchir de la question des formats de fichiers.

Ouverture et enregistrement de fichiers d’image avec Pillow

Le bout de code suivant convertit le fichier tigre.jpg (au format JPEG) en tigre.png (au format PNG) :

   1 import PIL.Image as Image
   2 im = Image.open(r'tigre.jpg')
   3 im.save(r'tigre.png')

Essayez chez vous.

Informations sur une image

Dans un interpréteur Python, essayez :

   1 import PIL.Image as Image
   2 im = Image.open(r'tigre.jpg')

puis essayez d’utiliser la documentation interne de python (par exemple via la fonction dir de Python ou la commande help de l’interpréteur) pour explorer les informations fournies par l’objet image.

Essayez par exemple d’obtenir sa taille.

Représentation d’une image en mémoire

Si im est une image chargée avec PIL.Image.open, on accède à ses pixels via la fonction im.load() qui renvoie un tableau indexé par des couples d’entiers (et non pas une matrice au sens python du terme).

Par exemple,

   1 pixels = im.load()
   2 print(pixels[0,0])

renvoie la valeur du pixel en haut à gauche de l’image.

Affichez des pixels de l’image en couleurs, puis de l’image en noir et blanc. Que remarquez-vous ?

Modifier une image

Pour modifier un pixel, on change sa valeur dans le tableau des pixels. Essayez :

   1 pixels[0,0] = 0
   2 im.save(r'tigre_mod.png')

Est-ce que ça fonctionne avec l’image en noir et blanc ? Avec celle en couleurs ? Quel est l’effet produit.

Premiers filtres

Vous êtes parés pour écrire votre premier filtre : écrivez une fonction rev(im) qui remplace tous les pixels de l’image im par leur valeur en négatif. Traitez d’abord le cas en noir et blanc, puis celui en couleurs. Essayez de la modifier pour que ça fonctionne dans tous les cas.

Couleurs

Autre exercice basique : écrivez une fonction canaux(im) qui prend en argument une image im en couleurs (mode "RGB") et renvoie le triplet d’images en nivaux de gris (mode "L") donnant les valeurs de chaque canal (rouge, vert, bleu). Indice: il faut créer de nouvelles images en utilisant Image.new (voir help(Image.new) dans l’interpréteur).

Écrivez une fonction couleur_vers_gris(im) qui transforme une image en couleurs vers une image en niveaux de gris. Est-ce convaincant ? Comparez avec l’image en niveaux de gris proposée plus haut : comment expliquez-vous la différence ?

Dans la suite, on pourra se limiter au cas des images en noir et blanc.

Lissage et bruit

Développez une série de filtres :

  • filtre en moyenne (chaque pixel est remplacé par la moyenne de son voisinage de Moore, c’est-à-dire le pixel et ses 8 voisins)
  • filtre médian (la même chose mais avec la médiane)
  • filtre qui génère un bruit aléatoire (on réfléchira ensemble à ce que ça signifie)

Testez ensuite l’effet du filtre en moyenne et du filtre médian sur une image bruitée : qu’en pensez-vous ?

Filtrage linéaire

Programmez le filtre de Sobel comme une fonction sobel(im) : chaque pixel de l’image filtrée est une approximation de la norme du gradient de l’intensité.

Pour réaliser cette étape, il sera utile de traiter d’abord le cas général du filtrage linéaire, qui consiste à calculer pour chaque pixel le produit de convolution de son voisinage de Moore avec une matrice 3x3 fixée (le noyau) : écrivez une fonction filtre(im,noyau) qui fait ce travail.

Vous pourrez alors tester cette méthode avec les deux matrices utilisées dans le filtre de Sobel (voir la page Wikipédia), qui génèrent une approximation des composantes horizontale et verticale du gradient.

/!\ À cause des limites de valeurs pour un pixel (de 0 à 255), on perd les valeurs négatives ou trop fortes des composantes du gradient : on ne distingue que le passage d’une partie foncée à une partie claire. Pour mieux comprendre, essayez avec les matrices opposées.

Le filtre de Sobel est alors obtenu en appliquant pour chaque pixel les deux matrices, en en prenant la norme du couple de valeurs obtenues (essayez avec les normes N_1, N_2 et N_inf).

/!\ Vue la remarque précédente, la méthode qui consisterait à générer deux filtrages linéaires avec les matrices pour le gradient horizontal et vertical, puis en calculant la norme point à point à partir des deux images obtenues fonctionne mal : on a tronqué les valeurs trop tôt.

WikISN: Filtres d’image (last edited 2016-01-25 14:11:53 by LionelVaux)